Smart Energy Monitoring Network

May 1725

Adviser: Nathan Neihart

Client: Commercial Product

The Team

Joey Freeland

Team Co-Lead

Software Designer Adam Cha

Communications Team Lead

Microcontroller Programmer & 3D Printing Designer Adam Dau

Webmaster

WebApp Constructor Wei LinLin

Concept Holder

Database Developer James Tran

Concept Holder

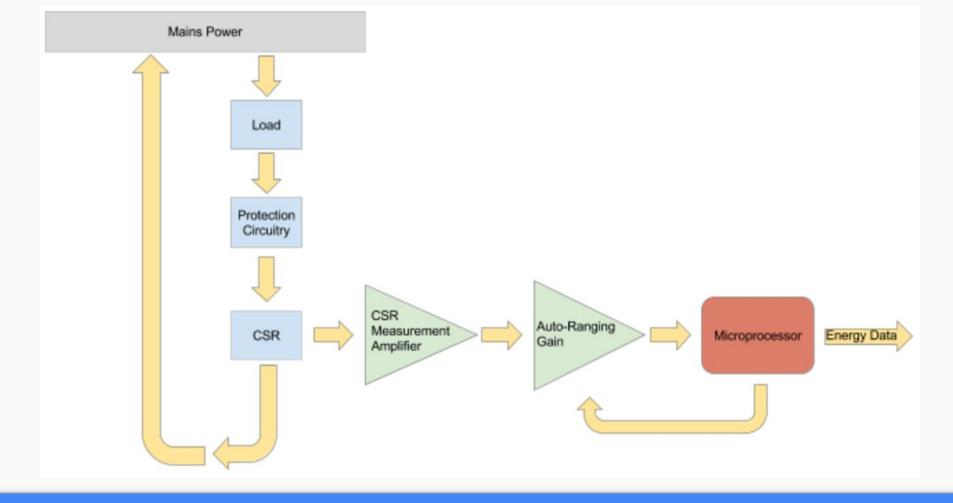
Hardware Designer Milan Patel

Team Co-Lead

Hardware Designer

Mission statement:

To make a wireless power sensor that can monitor the power usage of different electronic devices and report that power usage back to the user via a user-friendly web application.

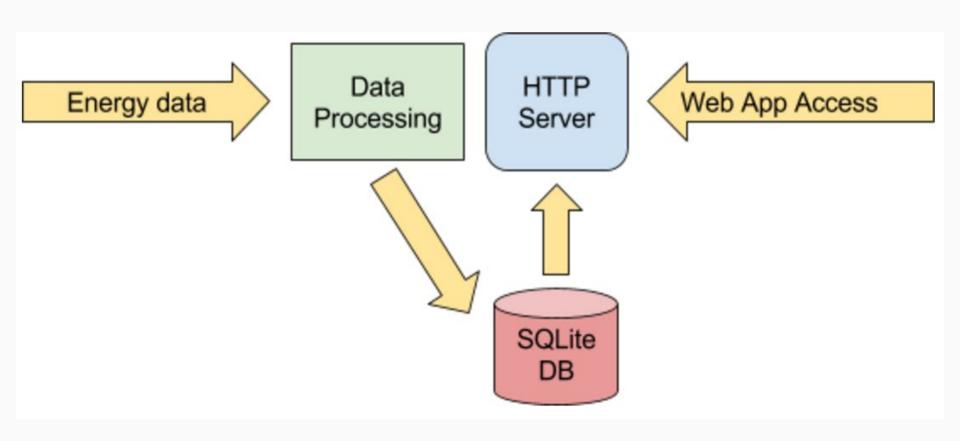

Hardware Requirements

Functional:

- Power Consumption Under 5W
- Operate with current magnitudes ranging from 100mA - 15A RMS
- Provide output with minimal frequency modulation

Non-Functional:

- NEMA 5, or equivalent housing
- Non-intrusive to other objects on the outlet
- Negligible Audible Noise
- Adequate Communication Range


Software Requirements

Functional:

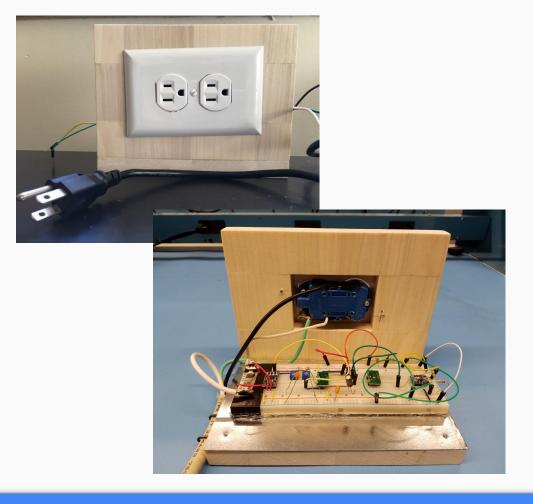
- Web application shall retrieve it's data from a central database.
- Web application shall allow the user to change the period of energy data collection
- Web application shall show a list of all connected monitoring systems
- Web application shall allow the user to give each station a user-friendly name
- Web application shall allow the user to turn off the AC power to individual energy monitoring systems.

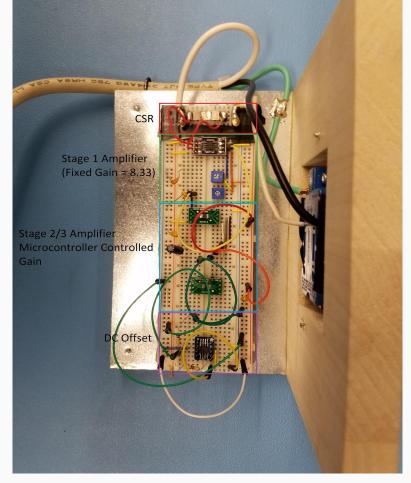
Non-Functional:

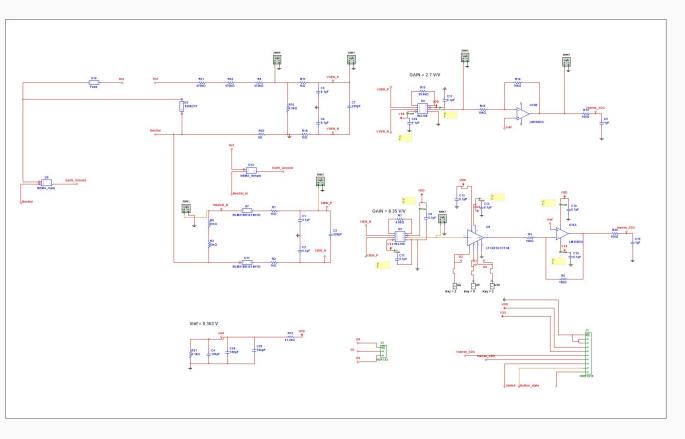
- Web app should be modern and well-designed, with a sensible UI.
- Web app should have easy to use buttons and controls for the UI.
- Web app should have easy access to different monitoring stations.

Software Design

- Each sensor has a WiFi enabled microcontroller
 - Texas Instruments CC3200
 - 32-bit ARM core
- Data is sent from each sensor to a central hub
 - Connection is UDP-based
 - Sensor samples are stored in a central database
- Central hub hosts a web server accessible from any device
 - Web application is mobile-friendly
 - User has the option to create graphs

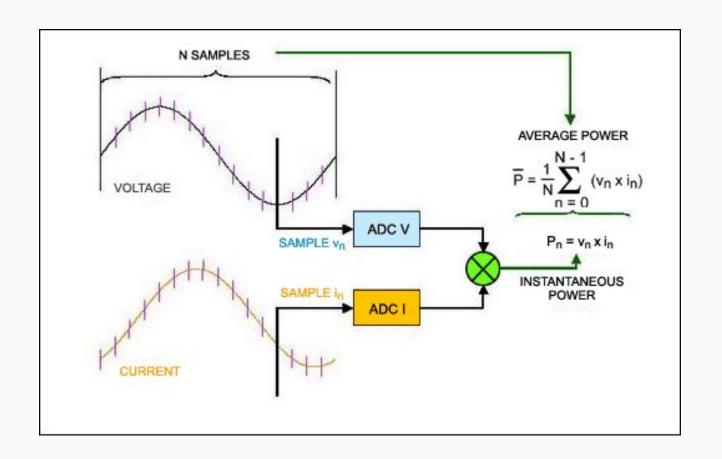

Software Technology Platforms


- Code Composer Studio
 - Free version of IDE from Texas Instruments
- SQLite
 - Connectionless database fits our lightweight model
 - Stores all past sensor measurements
- Python
 - Runs on central hub to provide sensor connection and web application

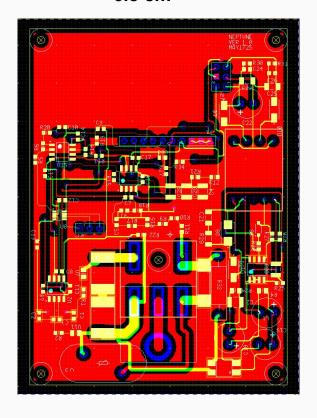

Current Hardware Status

Hardware

- Refined Functional Prototype Circuit
- Finalized and Ordered Rev. 1 PCB
- Prepping For Conjunction With Software Circuit

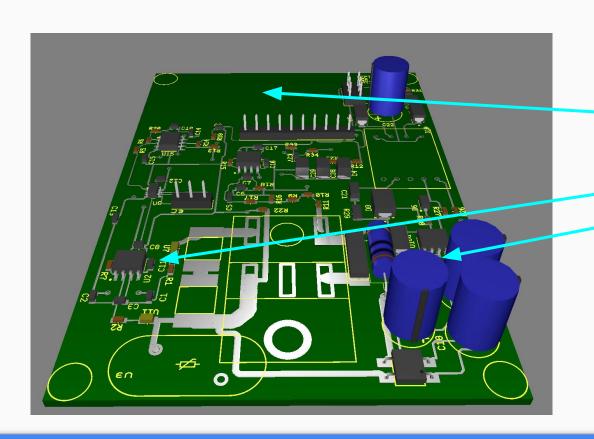


Sensing Challenge:


Low current detection

Solution:

- Low-pass filter
- Programmable Amplifier for autoranging


6.8 cm

9.4 cm

PCB status:

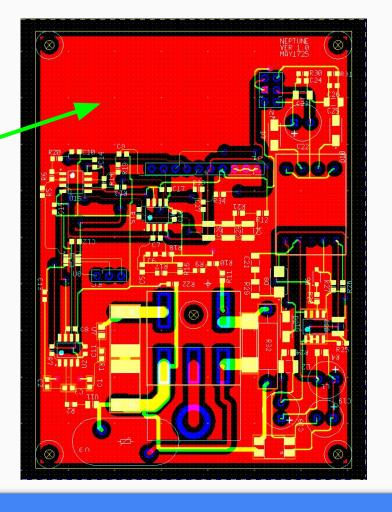
- Board ordered (expect to arrive ~ 10 days)
- Transformer, amplifiers received
- All passive components received

3 main areas:

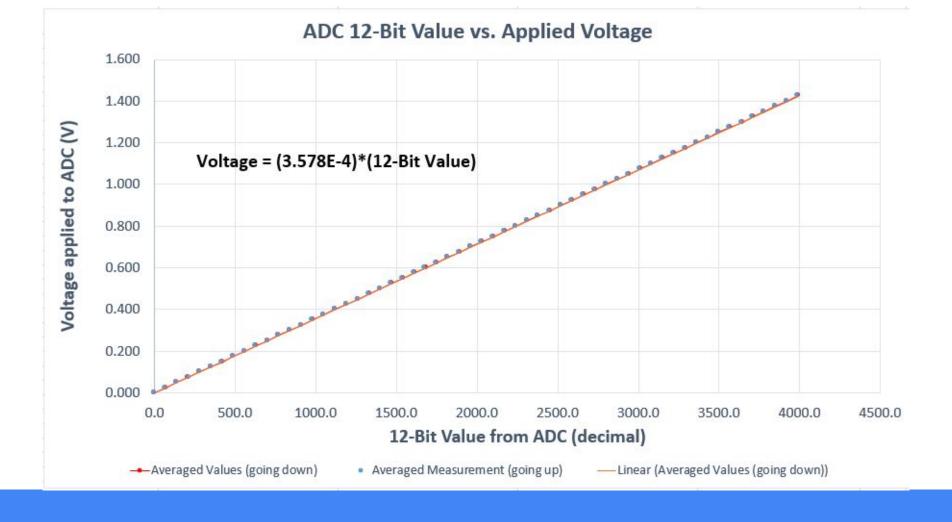
- CC3200
 Microcontroller
- Sensing Circuits
- Power Supply

Hardware Challenge


MCU Challenge:


Difficult to solder

Solution:


 Reduce number of pin usage

Current Software Status

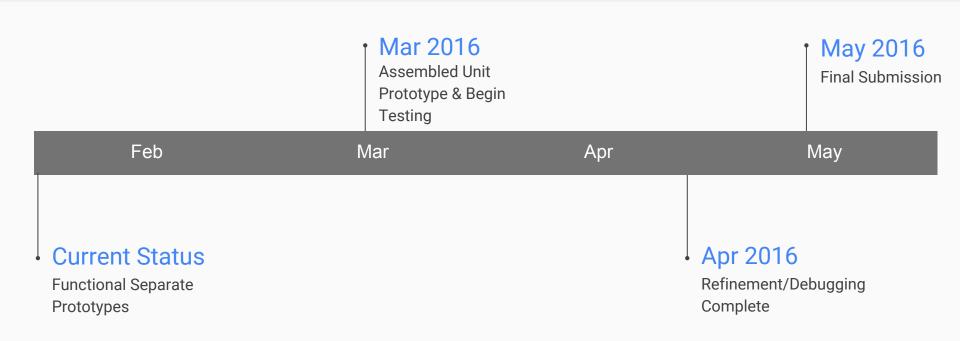
- CC3200 calculating RMS power data
 - Using function generator we have tested ADC linearity
 - Running-RMS algorithm implemented
- UDP Transmission of sensor data
 - CC3200 sends a UDP packet over the WiFi to the central hub
 - Packet is received by Python UDP server and inserted into the database
- Early version of website
 - REST API with dummy data
 - API feeds data to dynamic graphs

REST API

```
power: 3.600853497959622,
      station_id: "1",
      timestamp: 0
},
- {
      power: 9.868210043072839,
      station_id: "1",
      timestamp: 1
  },
      power: 9.078286273047317,
      station_id: "1",
      timestamp: 2
      power: 6.427535907109449,
      station id: "1",
      timestamp: 3
  },
```

```
[
    id: 1,
    name: "Living Room"
    },
    {
       id: 2,
       name: "Kitchen"
    },
       {
       id: 3,
       name: "Garage"
    }
]
```

Website Screenshot


3D Enclosure

Milestones

Questions?

Software Challenges

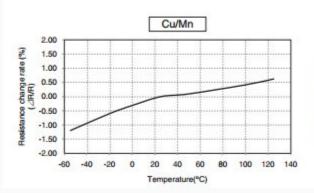
- 1. Website usability
- 2. Accuracy of ADC (noise)

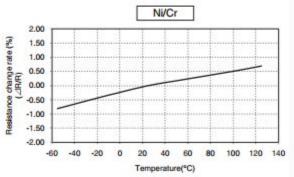
3.

Hardware Challenges

- Unwanted noise probably occur in real circuit
- 2. Integrate CC3200 onto the board

Bill of Materials


Part Number	Part Description	Quantity	Cost	To	tal
INA145	Difference Amplfier		1	\$1.80	\$1.80
LTC6910-1	Programmable Amplifier		2	\$2.06	\$4.12
PSR500HTQFJ2L00	Current Sense Resistor (2mOhms)		2	\$1.68	\$3.36
CC3200MOD	Microcontroller with Wifi		1	\$9.99	\$9.99
OPA344UA	Precision Op Amps		1	\$0.61	\$0.61
Capacitor	Varies		6	\$0.10	\$0.60
Resistor	0.25 W Carbon-Film Through Hole		5	\$0.10	\$0.50
Total Cost					\$20.98


Project Neptune - Timeli	ne												2016																				2	017									
AUG			AUG SEP OCT NOV						v	DEC					JAN FEB						MAR APR						M	MAY															
Deliverables		Duration	W1	W2 V	W3	W4	W5	W1	W2	W3 V	N4 V	N1 W	2 W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W5	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2 V	V3 W	/4 W	V1 V	N2	wa v	V4 V	/5 W	1 W	2 W.	3 W4
Plug-in Adapter to Measure Energ	y Usage	37w																																									
		Week #		-	-	1	2	3	4	5	6	7	8 9	10	11	12	13	14	15	5 16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37		-
		Milestone											1	2		3			4	ı							5																
Planning phase		3 w																						Į.				4															
Project Conception	Task I	2 w																																									
Advisor Assignment	Task II	1w																																									
Project Assignment/Approval	Task III	3 w									-				- 100				-																								
Research phase		8 w																																	-								-
Research Power Measurement	Task I	3 w									-			_																						\neg							
Research Components	Task II	5 w									ſ																																
Construct Block Diagram	Task III	3 w																																									
Set Specifications	Task IV	2 w									-				100													Į.								_							
Prototype phase (Analog)		14 w																																		-				-			_
Design PCB	Task I	4 w	Г																																	\equiv							
Order Components	Task II	2 w																																									
Fabricate	Task III	2 w																																									
Test	Task IV	2 w																																									
Prototype phase (Software)		14 w						e									t				t														100								
Setup database schema	Task I	2 w																																									
Setup HTTP Server	Task II	2 w																																									
Develop data collection code	Task III	2 w																																									
Develop UI (Front end)	Task IV	2 w													-8																												
Closure phase		3 w						e e							100													ice							-								-
Documentation	Task I	3 w																																									
Final Presentation Preparation											-				- 10				-					Į,				Ļ															_
Annotations													1 Pro	ject Pl	an Rev	1 Du	e																		+								
																	Dogun	ment R	Rev. 1	Due																							
																3	Proje	ect Pla	n Rev	v. 2 Du	e																						
																ľ				Fina		ect Plan	8. De	sign D	ocu me	nts Du	e																
																			1	10000				1				Funct	tioning	Protot	voe												

	Type of Enclosure												
Provides a Degree of Protection Against the Following Conditions	1 *	2 *	4	4X	5	6	6P	12	12K	13			
Access to hazardous parts	X	X	X	X	Х	X	X	X	X	X			
Ingress of solid foreign objects (falling dirt)	X	X	X	X	X	X	X	X	X	X			
Ingress of water (Dripping and light splashing)		X	X	X	X	X	X	X	X	X			
Ingress of solid foreign objects (Circulating dust, lint, fibers, and flyings **)			X	Х		Х	X	Х	X	X			
Ingress of solid foreign objects (Settling airborne dust, lint, fibers, and flyings **)			X	X	X	X	X	X	X	X			
Ingress of water (Hosedown and splashing water)			X	X		X	X						
Oil and coolant seepage								X	X	Х			
Oil or coolant spraying and splashing										X			
Corrosive agents				X			X						
Ingress of water (Occasional temporary submersion)			•••			Х	X						
Ingress of water (Occasional prolonged submersion)					***		X	***					

	General	Comments
Dimensions	5 x 4 x 3 inches	Outlet faceplaces are 4-1/2" high x 2-3/4" wide
Plug options	US, 15 Amp	
Color	TBD	
Enclosure	NEMA 5 Rating	Consistent with Outlet Ratings
Operating Temprature (°C)	-20 < T < 70	
Storage Temprature (°C)	-40 < T <125	1
Radio		
-Sensitivity	-74 dBm minimum	
-Output Power	14.5 dBm minimum	TX POWER & RX POWER
Power Supply	120 V(RMS)	Vcc = 2.3 - 3.6V DC
Power Consumption	TBD	3200_MAX = Vref*229mA = 3.3V*229mA = 0.755mW?
F	unctions	Comments
Power Meter	H Walderson	
-Voltage Range	120 V(RMS)	
-Current Range	15A(RMS)	
-Current Floor	100mA(RMS)	
-Accuracy	Typ +/- 5.0%	
-Voltage Sensitivity	Varies	
-Optimum	TBD	
-Reported Resolution	TBD	
-Auto-Ranging Threshold	1.2 V	Voltage Floor Before Shifting Gain
Remote control		
-Max Switch Voltage	TBD	
-Max Switch Current	TBD	

● Variation of resistance with temperature (Reference temperature is 20°C)

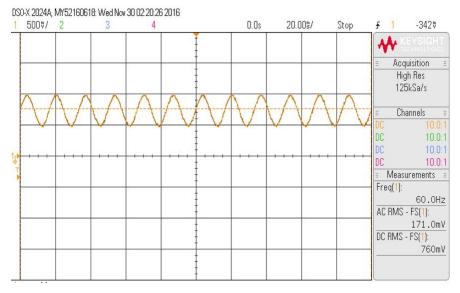
Part No.	L	w	н	b	Resistance	t	Material		
					0.3mΩ	1.85±0.15			
					0.5mΩ	1.30±0.15	Cu/Mn		
PSR400	10±0.3	5.2±0.3	0.5±0.1	2.0±0.6	1.0mΩ	0.90±0.15			
					2.0mΩ	1.15±0.15	NE / O		
					3.0mΩ	0.90±0.15	Ni/Cr		

Vin (V)	V_resistor (V)	I_resistor (A)	R(Ω)
0.001	0.000127	0.03	0.004233333
0.01	0.000601	0.147	0.004088435
0.02	0.00118	0.275	0.004290909
0.03	0.001649	0.406	0.004061576
0.04	0.00217	0.534	0.00406367
0.05	0.002704	0.666	0.00406006
- 65	95		0.004132997

Average Resistance

Risks

- 1. Electric Shock/Surges
- 2. Damaging Excessive Steady Current
- 3. Accuracy
- 4. Multi-Device Communication


Mitigations

- 1. Capacitive & Diode Protection Circuitry
- 2. Time Delayed 15A Fuses
- 3. Auto-Ranging Gain
- 4. UDP

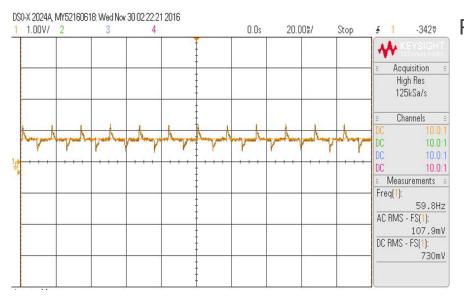
Testing Known Load

Analog: Weller WESD51

Results:

All RMS Values:

$$I = \frac{(171 \ mV)}{10 * 8.3 * 0.004}$$
$$I = 516 \ mA$$


Using Multimeter

$$I = \sim 510 \, mA$$

Testing Known Load

Digital: Cell Phone Charger

Results:

All RMS Values:

$$I = \frac{(107.9 \ mV)}{50 * 8.3 * 0.004}$$
$$I = 65 \ mA$$

Using Multimeter:

$$I = \sim 61 \, mA$$